16 febrero 2011

Cómo calcular la capacidad de las baterías para cada aplicación



Cuando compramos baterías el distribuidor nos facilita las especificaciones técnicas del producto: capacidad e energía que proporciona, la forma de maximizar su duración, el tamaño, el precio y algunos detalles más. Pero lo que no sabemos es la energía que va a proporcionar la batería para la aplicación en la que la vamos a emplear. Entre otras cosas porque la mayor parte de las baterías se irán cargando cíclicamente mediante diversas formas (paneles solares, redes públicas, etc). Ello conlleva que el tamaño seleccionado no será el más conveniente para el cliente en muchos casos, ya sea por defecto o por exceso. Ya que la batería supone un coste muy importante en muchos diseños es importante que sepamos con precisión como calcular la capacidad de la batería que necesitamos en función de la demanda prevista.

¿Cuál es el tamaño exacto de la batería que necesitamos para hacer funcionar la aplicación que estamos diseñando?
Para entender el proceso es importante disponer de un pequeño tutorial sobre medición de las cargas. Después de todo, son electrones lo que almacenamos en las baterías. Debemos partir que la medida de la carga es el coulomb y que un solo electrón tiene 1.602e-19 culombios de carga. Un amperio que circula por un conductor en un segundo usará un culombio de carga.
Q = I * t
donde Q es la carga en culombios, I es la corriente en amperios y t es el tiempo en segundos.
La cantidad de carga que pasa a través de un conductor (transportando 1,0 amperio) en 60 segundos es de 60 culombios, y en una hora hora habrán pasado 3600 culombios de carga.

Las baterías se han desarrollado simplificando las reglas de cálculo para que sea más fácil el sistema de medición. Era tedioso dividir por 3600 cada vez que quería saber cuánto tiempo durarían 24000 culombios y a los ingenieros de diseño de baterías se le ocurrió la unidad no autorizada de amperios-hora. Más tarde, cuando se utilizaron baterías más pequeñas se utilizaron miliamperios-hora.
El guión no debe confundirnos. Amperios-hora significa las veces que un número de amperios se acumulan por hora. Dividiendo entre amperios conseguimos horas, y si se divide por horas obtenemos amperios. Así que no son amperios, ni amperios por hora, son amperios-hora.
Amperios hora mide cuánta carga se almacena en la batería. Pero uesto que el voltaje de la batería cambia durante la descarga, no es una medida perfecta de la cantidad de energía almacenada. Para ello deberíamos usar vatios-hora. Multiplicando el voltaje promedio o nominal de la batería por la capacidad de la batería en amperios-hora, obtendremos una estimación de la cantidad de vatios-hora que contiene la batería.

La clave es utilizar los vatios para calcular los amperios en el voltaje de la batería.

Por ejemplo, supongamos que deseamos hacer funcionar una lámpara de 250 vatios 110VAC desde un inversor durante 5 horas.


E = C * Vavg


Donde E es la energía almacenada en vatios-hora, C es la capacidad en amperios-hora, y Vavg es la tensión promedio durante el proceso de descarga. Vatios-hora es una medida de energía, al igual que kilovatios-hora. Si multiplicamos por 3600 obtenemos vatios-segundos, que también se conoce como Julios.
También podemos mencionar que la carga de un condensador es también Q = CV, por lo que la carga de una batería puede ser cuantificada en faradios. El faradio es la unidad de capacidad eléctrica en el sistema internacional y se utiliza habitualmente en los condensadores. Una batería alcalina AA de 1,5 voltios que almacena 2 Ah de carga (que equivale a 7200 culombios) tiene la capacidad equivalente de 4800 Faradios. Por supuesto, una batería no se comporta como un condensador porque la tensión no baja en proporción a la carga almacenada, tiene una resistencia equivalente alta, etc.

A continuación indicamos como saber los amperios que vamos a necesitra para dar energía a cualquier dispositivo.
1º Paso. Averiguar el consumo
Si la corriente consumida la medimos en amperios y el tiempo en horas, entonces capacidad en amperios-hora T C es
C = xT
Por ejemplo, si una bomba consume 120 mA y deseamos que funcione durante 24 horas
C = 0,12 Amperios * 24 horas = 2.88 Amperios hora
Paso 2. Ciclo de vida
No es bueno descargar una batería hasta llegar a cero en cada ciclo de carga. Por ejemplo, si desea utilizar una batería de plomo ácido en muchos ciclos no debe trabajar extrayendo más del 80% de su carga, dejando el 20% restante en la batería. Esto amplía el número de ciclos disponibles y consigue que la batería se degrade menos y mantenga su capacidad de carga durante más tiempo.
C = C/0.8
Para el ejemplo anterior
C = 2,88 AH / 0,8 = 3,6 AH
Paso 3: Cambio de las consideraciones de descarga
Algunos químicas de la batería dan mucho menos Ah si se descargan rápido. Este efecto es grande en alcalinas, carbón y zinc, zinc-aire y baterías de plomo ácido. Es un efecto pequeño en NiCad, de iones de litio, polímero de litio, y las baterías de NiMH.

Para las baterías de plomo ácido la capacidad nominal (es decir, el número de AH grabado en la batería) se suele dar con una tasa de 20 horas de descarga. Si se descarga a una velocidad lenta obtendremos el número nominal de amperios-hora previstos. Sin embargo, a velocidades de descarga alta la capacidad cae abruptamente. Una regla de oro es que para una velocidad de descarga de 1 hora (es decir, extraer 10 amperios de una batería de 10 Ah, C1), sólo se obtendrá la mitad de la capacidad nominal (o 5 amperios-hora de una batería de 10 amperios-hora). Para conseguir mayor precisión pueden utilizarse los gráficos del fabricante que detallen este efecto de la velocidad de descarga.
Veamos un ejemplo: Si un amplificador de guitarra portátil está absorbiendo 20 amperios y deseamos que dure una hora, comenzaríamos con lo indicado en el Paso 1:
C = 20 amperios * 1 hora = 20 AH
A continuación, proceder al paso 2
             = C 20 AH / 0,8 = 25 AH
Luego tomaremos en cuenta una velocidad de descarga alta:
             C = 25 / 0,5 = 50 AH
Por lo tanto se necesitan 50 amperios hora de la batería de plomo sellada para hacer funcionar el amplificador durante 1 hora con una corriente promedio de 20 amperios
4º Paso ¿Qué ocurre si no tenemos una carga constante? En estos casos debemos calcular la corriente promedio del periodo estudiado. Consideraremos la posibilidad de un ciclo repetitivo en el que cada ciclo es de 1 hora. Consiste en 20 amperios por 1 segundo seguido por 0.1 amperios por el resto de la hora. La corriente promedio se calcula de la siguiente forma.
20 * 1 / 3600 + 0,1 (3559) / 3600 = 0,1044 amperios de corriente promedio.
(3600 es el número de segundos en una hora).
En otras palabras, encontrar cuantos amperios se extraen en promedio y se usan en los pasos 1 y 2. El Paso 3 es muy difícil de predecir en el caso de que tengamos períodos cortos con altas intensidades de corriente. La noticia es buena, una corriente constante de 1C reducirá la capacidad mucho más que a pulso corto de 1C seguido por un período de descanso. Así que si el consumo de corriente promedio es de aproximadamente una tarifa de 20 horas, entonces se acercará más a la capacidad de predecir con una tasa de 20 horas, a pesar de que lo estás dibujando en pulsos de alta corriente. Para obtener datos exactos debemos hacer ensayos nosotros mismos.


Si conocemos los vatios en vez de amperios, seguiremos el siguiente procedimiento:
Paso A: Convertir vatios a amperios
En realidad, los vatios son la unidad de potencia y los vatios-hora la unidad de energía almacenada.

Vatios-hora = vatios * hora = 250 vatios * 5 horas = 1250 vatios hora

Tengamos en cuenta que la eficiencia del inversor sea por ejemplo del 85%.

Vatios-hora = vatios * horas / eficiencia = 1250/0,85 = 1,470 vatios hora
Ya que vatios = amperios * voltios dividimos los vatios-hora por el voltaje de la batería y  obtenemos los amperios-hora de almacenaje de la batería.
Amperios-hora (a 12 voltios) = vatios-hora / 12 voltios = 1470 / 12 = 122.5 amperios-hora.
Si se está utilizando una batería de voltaje diferente los amperios-hora cambiarán dividiéndolo por el voltaje de la batería que se está utilizando.

7 comentarios:

Anónimo dijo...

¡Ah! al fin encontré lo que buscaba. A veces se necesita mucho esfuerzo para encontrar la pieza útil incluso pequeñas de información.

Gustavo Araiza dijo...

Excelente explicación!!!!!..los felicito sinceramente.

Anonima dijo...

¿y si lo que conocemos es la potencia por ejemplo 2500 W que está conectada a 220 V?

Anonima dijo...

¿y si conocemos la potencia en w y nada más?

Todoproductividad ingeniería y empresa dijo...

Si lo que conocemos es la potencia que está conectada a 220 voltios la información que tenemos es insuficiente.

Además de la potencia necesitamos saber el tiempo de descarga y también la velocidad de descarga.

Para una misma potencia la capacidad de las baterías baja si aceleramos el tiempo de descarga.

Anonima dijo...

Me he explicado incorrectamente. Lo que quería dar a entender es que trabajamos con una potencia de 2.500 W y se quiere que la batería dure 60 mins. No tengo más datos y lo que me interesa es encontrar el tipo de batería o baterías que me ofrezcan lo que pido y sus dimensiones. ¿Como se haría el cálculo?

Todoproductividad ingeniería y empresa dijo...

La capacidad de las baterías la obtendrás en Ah, que puedes pasar a vatios.

Así obtienes la capacidad total.

Luego consideras una capacidad de descarga, por ejemplo el 20 %.

La energía que quieres obtener de la batería la obtienes con los vatios de ese 20 % y ya está.